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* crystal structure

Ductile vs. Brittle Properties of Silicon

- diamond cubic structure (face-centered cubic)
* brittle-to-ductile transition (DBTT at ~500°C)
- below the DBTT (or at high strain rates), Si is completely brittle

¥ 2=0.534nm

e dislocations not mobile, Si fractures by cleavage on {111} planes
e fracture strengths ~ 1 to 20 GPa in single-crystal silicon
e fracture strengths ~ 3 to 5 GPa in polycrystalline silicon
- above the DBTT, silicon becomes gradually ductile
e glide motion of (a/2)<110> dislocations on {111} planes
e dissociation into (a/6)<112> Shockley partials with 4-6 nm stacking faults

e heterogeneous dislocation nucleation in “dislocation-free” crystals

e.g., at surfaces or due to deformation-induced amorphous Si
¢ solid-solution hardening by impurity solutes, e.g., oxygen, nitrogen
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Indent went to a
peak depth of 216 nm

diamond

* no phase transformations

* large plastic extrusions of the
diamond cubic phase

» dislocation nucleation easier
than phase transformation

Minor, Stach, et al., Phys. Rev. Lett.., 2003

Wall & Dahmen, 1997
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““ Modes of Failure in Silicon | )

* Brittle (catastrophic) fracture

- catastrophic transgranular cleavage fracture on {111} planes

- evidence for {110} cleavage for “low energy/velocity” fractures

» Sustained-load cracking (delayed fracture)

- no evidence for delayed fracture from subcritical crack growth, e.g.,
due to stress-corrosion cracking, in bulk silicon below the DBTT
(<500°C)

- evidence for moisture-induced cracking in thin film silicon
« Cyclic fatigue failure (delayed fracture)

- no evidence for delayed fracture from fatigue cracking under
alternating loads in bulk silicon below the DBTT

- strong evidence of premature fatigue failure of thin film silicon



::}l A | What affects resistance to brittle fracture?

r n

r\ in silicon?

Extrinsic Toughening Intrinsic Toughening

* Intrinsic factors
- bond rupture
- plasticity, i.e., mobile dislocations

- defect (crack) population

° Toughenlng mechanlsms behind crack tip - ahead of crack tip

- intrinsic mechanisms (ahead of crack tip)
e microstructure, e.g., second phases

- extrinsic (crack-tip shielding) mechanisms (behind crack tip)
e crack bridging (intergranular cracking)
e microcrack toughening (from dilation and reduced stiffness)

e residual stresses (compressive for toughening)



creccee] | Brittle Fracture of Silicon
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e —————— transgranular
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fracture

{111} cleavage
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of notch
{110}

cleavage

Muhlstein, Brown, Ritchie, Sensors & Actuators, 2001

Ballarini et al., ASTM STP 1413, 2001



if\l—\ﬂ Brittle Fracture of Silicon
» elastic modulus
- E~ 160 GPa g i Cenos [
« high fracture strengths ; R QS
- 1 to 20 GPa in single-crystal silicon 2 - i |
- 3 to 5 GPa in polycrystalline silicon 3 il mre @ To |
- dependent on defect size, loading mode, £ (GPa)
specimen size, orientation, test method e

Sharpe et al., ASTM STP 1413, 2001

- probability of fracture dependent on
“weakest-link” (Weibull) statistics

08+

| o L=70um
—m=73, mean=425GPa |

| X L=80um

(m.j | —m=8.3, mean=405GPa

| + L=90um

—m=7.7, mean = 3.95 GPa |

08 A

 |ow fracture toughness

07 |

|
05 4

K. ~ 1 MPavm in polysilicon thin films

04 4

034

K.~ 0.7-1.3 MPavm in single-crystal films

024

014

dependent on specimen type, orientation }
and investigator .2_0 25 an 35 40 45 50 55

Cumulative failure probability

Fracture strength (GPa)

independent of microstructure

Johnson et al., ASTM STP 1413, 2001
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« brittle fracture of silicon governed solely by
the rupture of Si-Si bonds at the crack tip

Probability of Brittle Fracture in Silicon

[ )] (=]
LI T |

- K, is independent of microstructure

« except variations due to orientation (in single-
crystal Si) and experimental error, fracture
strength depends on the defect population

Fracture strength (GPa)

0 0.2 04 0.6 0.8 1

« The probability of failure, Pg, can thus best be N
Probability of fracture (FP)

described in terms of “weakest-link” statistics

P(oc)=1-exp| - j av(E=2y N

F

In(In(1/1-P,))

- where o, is the lower bound fracture strength, *E
o, IS the “scale parameter”, m is the Weibull S S
modulus, and V is the volume of the sample S .

Fracture strength (GPa)

LaVan et al., ASTM STP 1413, 2001



reececd] W | Strength vs. Fracture Toughness
9 9

 fracture strength/strain subject to extreme 6 .
variability — not a material property X ; 8 -
« more fundamental parameter is the § ’ 3
fracture toughness - K. or G, g3 8
- where K_ is the critical value of the stress g’ a
intenisty K to cause fracture i

= Yo <100>  <110>  <111>
KC QGF (nac) Tensile direction

GF 1S the fraCture Strength Ballarini et al., ASTM STP 1413, 2001

a. is the critical crack size : _ P-doped _
] . amorphous fine-grained fine-grained columnar multilayer
Q IS a geometry faCtor (”'UnltY) " 6 | avg.= 1.0 avg. @= 10| avg.= L1 avg.= 1.0 avg. = 0.9
= | stdev.=0.3 1 =0.1 stdev.=0.2 stdev.= 0.1 stdev.=0.1
- and G, is the strain energy 2’ - -
- 4
release rate 5
o 3
— 2 Q
GC = (KC) IE E
Z
E is Young’s modulus B o dHE | o
° K — 1 MPa,\/m in Si and iS 0 0709 1.1 1.3 1.5 07 09 1.1 1.3 1.5 0709 1.1 1.3 15 07 09 1.1 1.3 1.5 07 09 1.1 1.3 1.5
.=

_ _ K. (MPavm)
independent of microstructure and dopant



ﬁhl I Measurement of Fracture Toughness

K. = Qo (na,)”
mi.crohardness indent
|

|

shar.p pre-crack

(b)*

* measurement of the fracture toughness of
thin-film silicon using MEMS

Ballarini et al., ASTM STP 1413, 2001



’:\I ﬂ Fracture Mechanics Approach

Polyerystalline Silicon Native Oxide

- low fracture toughness K in silicon 2pmfllms - s
K.~ 1 MPaVym

- 0.7 to 1.3 MPavm in single-crystal Si
- 1 MPavm in polysilicon thin films

« compare with K values of:

0.5 — °

Fracture Toughness, K (MPa Vm)
|
.
°

~0.6 MPaVm in (soda-lime) glass

2 to 3 MPaVvm in human teeth (dentin) .
3 to 8 MPavm in alumina ceramics

20 to 200 MPaVm in steels

200 T T T T

K. ~1MPaym

-

th

S
[

polysilicon
» from this microstructure-independent
K. value in Si, can:

100 [~

h
=]
|

- determine the fracture strength, o, as a
function of the largest defect size, a_

0
KC - Q Of (TEaC)VZ 0 1 2 3 4 5
Fracture strength, o (GPa)

Critical crack size, a, (nm)

Muhlstein, Stach, Ritchie, Acta Mat., 2002
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* Probability of brittle fracture
depends on defect (crack)
population

- use fracture strength approach
with weakest-link statistics to

determine probability of fracture YR —— ==
Probability of fracture (FP)

- characterize defect population . . ] ——
at sub-micron resolution E K.~ Q of (na.)”2
(actually tens of nanometers)  « ™| ~1MPaym 1

e X-ray tomography ; 100 - .
(e.g., Xradia, Concord, CA) g nl fractures
e GHz acoustic microscopy 5 | safe

Fracture strength, o (GPa)
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““ Modes of Failure in Silicon | )

* Brittle (catastrophic) fracture

- catastrophic transgranular cleavage fracture on {111} planes

- evidence for {110} cleavage for “low energy/velocity” fractures

» Sustained-load cracking (delayed fracture)

- no evidence for delayed fracture from subcritical crack growth, e.g.,
due to stress-corrosion cracking, in bulk silicon below the DBTT
(<500°C)

- evidence for moisture-induced cracking in thin film silicon
« Cyclic fatigue failure (delayed fracture)

- no evidence for delayed fracture from fatigue cracking under
alternating loads in bulk silicon below the DBTT

- strong evidence of premature fatigue failure of thin film silicon
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BEERKELEY LaB

* micron-scale silicon films display

ceee

(GPa)

app

Maximum Principal Stress, ¢

some evidence of time-delayed
failure under sustained (non-cyclic)

A Environmentally-Assisted Cracking in
A‘ Polycrystalline Silicon

loading
l | | | T l |
MUMPs Polycrystalline Silicon
Bagdahn and Sharpe, unpublished (2002)
09 =
- SRnaH
-~ e _
0.8 € ° e o ® =n QA
A A A ¢
0.7 - -
0.6 =
©  Hole Sample (Air) ® Hole Sample (Water)
1 Notched Sample (Air) B Notched Sample (Water)
A Straight Sample (Air) A Straight Sample (Water)
0.5 | | | | | |
10’ 10" 10° 10° 10° 10° 10° 10

Time to Failure, t (seconds)

Tensile

Specimen == Grip End

Silicon
Die

Polysilicon
Film

* |ives for thin-film silicon are
somewhat shorter in water

* no evidence of such time-
delayed failure in bulk silicon

Bagdahn and Sharpe (2002) unpublished
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““ Modes of Failure in Silicon | )

* Brittle (catastrophic) fracture

- catastrophic transgranular cleavage fracture on {111} planes

- evidence for {110} cleavage for “low energy/velocity” fractures

» Sustained-load cracking (delayed fracture)

- no evidence for delayed fracture from subcritical crack growth, e.g.,
due to stress-corrosion cracking, in bulk silicon below the DBTT
(<500°C)

- evidence for moisture-induced cracking in thin film silicon
« Cyclic fatigue failure (delayed fracture)

- no evidence for delayed fracture from fatigue cracking under
alternating loads in bulk silicon below the DBTT

- strong evidence of premature fatigue failure of thin film silicon
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e composition
MUMPs process - LPCVD reactor®
n-type — P doped
deposited Si and PSG layers
thermally annealed at ~900°C

* microstructure
nominal grain size ~100 nm
low residual stresses ~ -9 MPa
* mechanical properties

E~163 GPa, v~0.22
bending strength, o ~ 3 -5 GPa
fracture toughness K, ~ 1 MPavm

*MCNC/JDS Uniphase/Cronos/MEMSCAP

LPCVD Polysilicon

low voltage SEM
uncoated sample

= T e 8 e e ey wEw

0.8 MeV TEM
2 um unthinned
sample

Contaminants

1x10"° atoms cm3 P
2x10'8 atoms/cm3 H T
1x10'® atoms/cm3 O
6x10" atoms/cm3 C

Muhlstein, Brown, Ritchie, Sensors & Actuators, 2001



reccers] | Microstructure of Polysilicon Films

defects in the polysilicon films
« stacking faults

« Lomer-Cottrell locks

* microtwins

Muhlstein, Stach, Ritchie, Acta Mater., 2002



;:_}l A Electrostatically-Actuated Resonant
’\A‘ Fatigue Testing

* notched cantilever beam attached to ~300 um
square perforated plate (resonant mass)

» “comb drives” on one side are electrostatically
forced to resonate at ~ 40 kHz, with R = -1

 other side provides for capacitive sensing of
motion, calibrated with machine vision system
(Freeman, MIT)

 stress amplitudes determined by finite-element
analysis (ANSYS)

» smallest notch root radius (1 — 1.5 um) achieved
by photolithographic masking

Brown, Van Arsdell, Muhlstein et al.
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Fatigue of Thin (20 um) Single Crystal )

’_\ Silicon Films

» Micron-scale p-type (110) single crystal Si
films can fail after 10° cycles at (maximum

principal) stresses (on 110 plane) of one half

the (single cycle) fracture strength

» {110} crack paths suggest mechanisms other

than {111} cleavage

10

Stress Amplitude (GPa)

(110) Notched Silicon Beam
30 £ 0.1°C, 50 % 2% Relative Humidity

0 I | | | | |

10° 10° 10" 10®° 10° 10" 10"
Fatigue Life (Cycles)

1012

== Propagation Direction

20 sec life

48 day life

[———]

500inm|

Muhlstein, Brown, Ritchie, J. MEMS, 2001.
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BEERKELEY LaB

stresses of one half the (single cycle)
fracture strength

Stress Amplitude, (GPa)

Micron-scale polycrystalline n-type Si
is susceptible to fatigue failure

Films can fail after 10° cycles at

4 MUMPs 18 SN (pres).QPC

A ® 2.5 Minute HF Release
A 3.0 Minute HF Release
3+
2 L
1L
Notched Polycrystalline Silicon Beam
Laboratory Air
O | l l l | l

10° 10° 10" 10® 10° 10" 10"
Fatigue Life, Nf (Cycles)

1012

A Fatigue of Thin (2 um) Polycrystalline
Silicon Films

3.8 x 10" cycles to failure

slivers and debris on fractures consistent with
some degree of microcracking

Muhlstein, Brown, Ritchie, Sensors & Actuators, 2001
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Applied Stress Amplitude, o (GPa)

Fatigue of Single Crystal and
Polycrystalline Silicon Thin Films

20 6
[ ] I'E"Illlllsll:in ,:I al. (2000) L 3 Kahn, et al. (1999)
= [ | Sundararajan and Bhushan (2002) * ] Kapels et al. (2000)
A Sharpe & Turner (1999)
5 Sharpe & Bagdahn (1999)
E b 4 @  Mublstein et al. (2001)
15 T : o
‘i—" .
] 4 *
| & e ¢ *
n k= . °
= $ . °
i - -I E- A ks 'S ] o ' 0“.0 .. ..
H < f- - ° °
@ '1 * ® ®
' o ‘ ® g ).
= H = *
=
[ | ]
S5 e ® [ ] %' A A
(=%
[ N = b i “‘
Single Crystal Silicon (110) Polyerystalline Silicon
R N T T T T AU TN MR TR N .o T T TR T SR NN M M M
0
-1 1 3 5 7 9 11 ¢ -1 1 3 5 T 9 1
10 10 10 10 10 10 10 10 10 10 10 10 10 10

Fatigue Life, Nr (Cycles) Fatigue Life, Nr (Cycles)

single-crystal (110) silicon polycrystalline silicon

Micron-scale silicon films display delayed failure under high-cycle fatigue
loading

No such delayed fatigue failure is seen in bulk silicon
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BEERKELEY LaB

transgranular cleavage
cracking from notch
under sustained loads

some evidence of
secondary cracking and
multiple microcracking

Microcracking

Unthinned HVTEM

(I
500 nm

Muhlstein, Stach, Ritchie, Acta Mater., 2002
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BEERKELEY LaB

Traditional Fatigue Mechanisms

Bulk ductile materials

Extrinsic Processes Intrinsic Processes

k
Metals asperity, oxide — Cé?&ifﬁﬂ?"ﬂﬁg %y
wedge -_stnatlons resharpening

Levels of Closure; Crack Advance:
Knax Gontrolied AK Controlled

Ceramics |brdging crack advance by

static modes

Bridging Degradation: Crack Advance:
AK Controlled Kmax Controlied

(Ritchie,1989)
Bulk brittle materials

350

300

250

200

150

100

Stress Amplitude (GPa)

A
o

1

200

-
a
o

Stress Amplitude (GPa)
3 3

|- 2024-T4
Smooth Bar Rotating Beam Fatigue
Templin, elt al. (1950) I | |
0* 10° 10° 10’ 10° 10°
Fatigue Life (Cycles)
* % o 00 o0 e
* e oo: (X ] 0‘.
— (I XX ]
AI203, Tension-tension fatigue
Lathall)ai, et al. I(1990) | | |
10" 10* 10° 10* 10° 10° 10"  10°

Fatigue Life (Cycles)
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'::‘}I Proposed Mechanisms of Silicon Fatigue | {1

Dislocation activity in thin films

. Stress-induced phase transformations (e.g., amorphous Si)

. Impurity effects (e.g., precipitates)

. Suppression of crack-tip shielding

. Surface effects (native oxide layer)
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native oxide

Notch Root Oxide Thickening th | Ckn ess ~30 nm

in fatigue, oxide
thickness at notch
root seen to
thicken three-fold
to ~100 nm

in sustained
loading, no such
thickening is seen

0.8 MeV HVTEM

2 um unthinned
sample

[
500 nm

o,= 2.26 GPa, N,= 3.56 x10° cycles

Muhlstein, Stach, Ritchie, Acta Mat., 2002



::hl m Thermal vs. Mechanical Oxide Thickening

- Raw IR Image 390 MPa « temperature measured in
“ Situ at various stresses using
a high-resolution IR camera

* IR camera capable of
detecting AT to within mK
with lateral positioning within
microns

« small changes in AT of the
<1K resonant mass due to friction
with the air

* notch region shows no
change (<1 K) in AT during
the fatigue test

» the observed 3-fold
thickening of the oxide film in
the notch region is promoted
by mechanical rather than
thermal factors

Muhlstein, Stach, Ritchie, Appl. Phys. Lett., 2002



:-:>| ﬁ}‘ Crack Initiation in Notch Root Oxide

BEERKELEY LaB

0.8 MeV HVTEM

2 um unthinned
oxide —» Sample

e crack initiation in oxide
scale during interrupted
fatigue test

e evidence of several cracks
~40 — 50 nm in length

* length of cracks consistent
with change in resonant
frequency

oy —— Cracks

« strongly suggests
subcritical cracking in the
oxide layer, consistent with
proposed model for fatigue

interrupted after 3.56 < 10° cycles at 6, = 2.51 GPa 100 nm

Muhlstein, Stach, Ritchie, Acta Mater., 2002
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NG and Si0O,

Relative Crack-Growth Resistance of Si

Progressive time/cycle dependent fatigue mechanism could involve an
alternating process of oxide formation and oxide cracking. However, the
fracture toughnesses of Si and SiO, are comparable:

. Si: K. ~1 MPavm
« Si0,; K, ~0.8-1MPaim

In contrast, the susceptibility of Si and SiO, to environmentally-assisted
cracking in the presence of moisture are quite different, with silica glass
being much more prone to stress-corrosion cracking:

e Si: K

Iscc

« Si0,; K

Iscc

~ 1 MPaVym (in moisture)
~ 0.25 MPavm

Thus, fatigue mechanism is postulated as a sequential process of:
« mechanically-induced surface oxide thickening
« environmentally-assisted oxide cracking
« final brittle fracture of silicon

Muhlstein, Stach, Ritchie, Acta Mater., 2002



Silicon Fatigue Mechanism
- Reaction-Layer Fatigue -
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(@) (b) (c)

Notch

Root \

Reaction-Layer
Thickening

Reaction-Layer

Crack lnltlatlon\ A

-

Native Oxide

(@

(e)

Unstable

Subcritical

Crack Growth Crack Growth

Mubhlstein, Stach, Ritchie, Appl. Phys. Lett., 2002
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BEERKELEY LaB

49635 I . 0« measured change in natural frequency used
°° to compute specimen compliance and hence
10630 6 ° + crack length throughout the test
~ o]
= &
b 40625 g « for o, = 2 -5 GPa, crack lengths at onset of
: oo .. | 5 specimen failure remain less than ~50 nm
g 40620 - & E;
= 3 = Va
E §d& — 20 g KC Q OF (nac)
C% 40615 = § \Crackbength G 200 T T T
Fatigue Characterization Structure
40610 5 110 K_=0.8 MPa Vm
0@3§ N,=2.19x10" Cycles, 5 =2.71 GPa ~ 150
40605 ' ' ' ' 0 H
0 510° 110" 210" 210" 310" L
ime rcles c%
Time, N (Cycles) Z 100
» this suggests that the entire fatigue o
process, i.e., £
50
- crack initiation
- subcritical crack growth .

- onset of final failure 0 1 2 3 4 5

Applied Stress Amplitude, c, (GPa)
occurs within the native oxide layer

Muhlstein, Stach, Ritchie, Acta Mat., 2002



Why is Only Thin-Film Silicon Susceptible
to Reaction-Layer Fatigue?

) A
reeecee| |

[ ‘ [ ‘ ‘ & | ' 7 al _os
o %] =" A Ol =
= No Failure el
S .
a<h a,>h = /‘/
i 1.5 Stable Oxide Cracking, -
£ e No Silicon Failure
o
&

E / o a/
°© / = o =1

Ec ac = E 1 —------ /____________________.__._I. _____________ —
2 ®
£ Reaction-Layer o
. Fatigue o
N -
W / -
= / P
E 0.5 -/ g -
s | o Catastrophic Failure
= of Silicon

0 l l | |
: 0 1 2 3 4 5
film bulk

Specimen Width, W (LLm)

« mechanism is active for thin-film and bulk silicon in moist air
« due to low surface-to-volume ratio of bulk materials, the effect is insignificant

 critical crack size for failure can be reached in the oxide layer only for thin-film

silicon, i.e., where a_, < h
Muhlstein, Ritchie, 2002



':':}l A | Interfacial Crack Solutions: Crack Inside =
’—\ Layer, Normal to Interface W o)
.

* Beuth (1992)

— extension of Civilek o = 131 —1172
(1985) and Suo and . +E,
Hutchinson (1989,1990)
— dislocation-based fracture _ B B
mechanics solution S = H (1 2V2) H; (1 2V1)
* Ye, Suo, and Evans (1992) 204 (1= v, )+ 211, (1-1,)

SiO,/Si
a=-0.5
B=-0.2




':':}I ﬁ}‘ Crack-Growth Rates and Final Failure

BEERKELEY LaB

: ' ' ' (T, » estimated cracking rates
Notched Polycrystalline Silicon Beam . .

o N,=232x10",6 =3.15 GPa display decreasing growth-
ol i | rate behavior, consistent
e .

- .. with:
% -16 i [ ]
g 100 oo, 7| - small-crack effects
g [ X
=
= *eee - displacement-control conditions
2 1w - —
: . . L
o ST - residual stresses in film
=% °
2 e/ige
S 10" L G * o - growth toward SiO,/Si interface
T I0
®
10-'19 1 | 1 | 1 | 1 | 1
0 10 20 30 40 50
Crack Length, a (nm)

Muhlstein, Stach, Ritchie, Acta Mat., 2002
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BEERKELEY LaB

10
>
by —
z 8
3
= <
H oy
23 6
g=.
U =

(=}
TS 4
=
=
E
=
z

0

A
m

Normalized Crack Length, a/h

K, is the interfacial K where a/h = 0.05; h =100 nm

I I I l —
Cracked Fatigue _.-"'-
Characterization Structure .-"-i/lonolithic
~SiO_on Si o Solution |
-"'
'l
'l
=3 "' =
"' max ~
[
i ',' Interfacial |
[} Solution
:
F 1 1 ' '
0 0.2 0.4 0.6 0.8 1

Solution for Crack in Native Oxide of Si

* interfacial
solutions for a
compliant
(cracked) SiO,
layer on a stiff
silicon substrate

* crack-driving
force Kis f(a,h)

 maximum K is
found at a/h ~
0.8

Muhlstein and Ritchie, Int. J. Fract., 2003
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(MPa Vm)

max

Maximum Interfacial Stress Intensity Factor, K

[a—
]
h

0.75

S
n

0.25

A
m

fracture

reaction-layer fatigue

/K ~0.25 MPaym

Iscc

M i

«— f?tigue IoadsI —

2 3 4

Applied Stress Amplitude, Gapp

5

maximum K at
(a/lh) ~ 0.8

in range of fatigue
failure, where Capp™ 2
to 5 GPa, cyclic-
induced oxidation
required for reaction-

layer fatigue

oxide thickness > 46
nm for failure
at 6,,,< 5 GPa

oxide thickness > 2.9

nm for crack initiation
at o ,, <95 GPa

Muhlstein and Ritchie, Int. J. Fract., 2003
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Bounds for Reaction-Layer Fatigue

E 200 | . . . behavi
= * behavior dependent
= SAFE |\ SAFE on reaction-layer
& Reaction-Layer thickness
v 150 + ; -
£ Fatigue « bounds set by K
o and K; of the oxﬂ
=
- : : :

u 4+ regimes consist of:
i 100 Subcritical J

- no crack initiation in
3 Crack Growth oxide (K < K.__.)
S 50 king in oxide but
o~ - Cracking Iin oxide bu
R No Crack no failure (Kii..< K < K,)
Q Initiation K =K _ _
= max see - reaction-layer fatigue
f:’ 0 | | | | (K> Ko)
5 0 1 2 3 4 5
Applied Stress, ¢ (GPa)

* Reaction-layer fatigue provides a mechanism for delayed failure in thin films of
materials that are ostensibly immune to stress corrosion and fatigue in their bulk form

Muhlstein and Ritchie, Int. J. Fract., 2003



Alkene-Based Self-Assembled Monolayer

reerrrr [} ]
Ny Coatings
+ fatigue testing in the absence of oxide TT———
formation achieved through the application —

of aklene-based monolayer coatings

!C
H H H H c H

" M om R &
\Si/ \Si/ \Si/ \Si/

Hydrogen-Terminated Silicon Surface

 Si chip is dipped in HF and then coated
with alkene-based monolayer coating —
1-octadecene

» alkene-based coating bonds directly to
the H-terminated silicon surface

» coating is a few nm thick, hydrophobic,
and stable up to 400°C; providing a
Surface barrier to moisture and oxygen

Muhlstein, Ashurst, Maboudian, Ritchie, 2001



reerrerrr 1]

Suppression of Reaction-Layer Fatigue

1.25
2 « SAM-coated Si samples display
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 alkene-based SAM coatings,
however, do lower the fracture
strength

Monolayer
Protected

 oxidation during release smooths out
surface; with coatings, sharp surface

features remain 500 o,

Muhlstein, Stach, Ritchie, Acta Mat., 2002
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Below a ductile-brittle transition temperature of ~500°C, Si displays a high
fracture strength (1 - 20 GPa in mono- and 3 - 5 GPa in poly-crystalline Si)

However, Si is intrinsically brittle with a fracture toughness of ~1 MPavm
(approximately twice that of window pane glass!). This value is independent
of microstructure and dopant type

Evaluation of probability of fracture can be made using weakest-link statistics
and/or nanoscale crack detection

Thin film (micron-scale) Si is susceptible to delayed fracture under sustained
and particularly high-cycle fatigue loading - prematurely failure can occur in
room air at ~50% of the fracture strength

Mechanism of cyclic fatigue is associated with mechanically-induced
thickening and moisture-induced cracking of the native oxide (SiO,) layer

Mechanism significant in thin-film (and not bulk) Si as the critical crack sizes
for device failure are less than native oxide thickness, i.e., a. < h,,i4e

Suppression of oxide formation at the notch root, using alkene-based SAM
coatings, markedly reduces the susceptibility of thin-film silicon to fatigue.
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r\ What affects fracture in silicon?

* Brittle Fracture
- Si-Si bond rupture
- defect (crack) population
- residual stresses

Probability of fracture depends
on defect (crack) population

Fracture strength (GPa)

0 0.2 0.4 06 0.8 1

wh
s
|

* Delayed Fracture

- cracking in native oxide layer .
(thin film silicon) n 1 : ; ; s

Fracture strength, o (GPa)

- smooth surfaces, round-off Probability of fracture (P)
edges, etch out cracks , . , ,
- use weakest-link statistics £ Ko~ Q o (rac)72
_ Pl ~1 MPaym
- detect microcracks on the =
scale of tens of nanometers 2 = 1
_g fractures
3
5




